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We show that

& f (k)&�" d k

dxk P (:, :)
n " , k=1, ..., n,

in the uniform norm for every real algebraic polynomial f of degree n which satisfies
the inequalities

| f (x)|�|P (:, :)
n (x)|

at the points x of local extrema of the ultraspherical polynomial P (:, :)
n in

[&1, 1]. � 1996 Academic Press, Inc.

1. Introduction

Denote by ?n the set of all real algebraic polynomials of degree less than
or equal to n. As usual, Tn(x) denotes the Tchebycheff polynomial of the
first kind, i.e.,

Tn(x)=cos n arccos x for x # [&1, 1].

Set

& f & := max
x # [&1, 1]

| f (x)|.

In 1892 Vladimir Markov [2] proved the inequality

& f (k)&�&T (k)
n & & f &, k=1, ..., n,
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for every f # ?n . A remarkable extension of this classical result was given by
Duffin and Schaeffer [1]. They showed that

| f (k)(x+iy)|�|T (k)
n (1+iy)|, k=1, ..., n, (1.1)

for every x # [&1, 1], y # (&�, �) and every polynomial f # ?n provided

| f (' (n)
j )|�1, j=0, ..., n,

where ' (n)
j :=cos( j?�n) are the points of local extrema of Tn(x) in [&1, 1].

Clearly (1.1) implies

& f (k)&�&T (k)
n &, k=1, ..., n. (1.2)

Recently A. Shadrin [5] simplified the original proof of Markov and
showed how inequality (1.1) can be deduced from Markov's work in the
particular case y=0. Shadrin studied the more general question concerning
the exact estimation of & f (k)& provided | f (x)| is bounded by |q(x)| at the
set

&1=t0(q)<t1(q)< } } } <tn(q)=1

of extremal points of a given polynomial q from ?n (q$(tj)=0,
j=1, ..., n&1). He proved the following

Theorem A. Let q be any fixed polynomial of degree n with n distinct
zeros in (&1, 1). Suppose that f # ?n and

| f (tj (q))|�|q(tj (q))|, j=0, ..., n. (1.3)

Then, for every x # [&1, 1] and k=1, ..., n,

| f (k)(x)|�max { |q(k)(x)|, } 1k (x2&1) q(k+1)(x)+xq(k)(x) }= . (1.4)

Shadrin mentioned also that for k=n and k=n&1 one can easily derive
from (1.4) that the assumptions of Theorem A imply

& f (k)&�&q(k)&. (1.5)

Does the inequality hold for every k # [1, 2, ..., n]? Shadrin gave a simple
counterexample which shows that (1.5) is not true in general for each
admissible q and k. Despite of the efforts of many mathematicians no other
example was found in which the conditions (1.3) imply (1.5) except the
case q=Tn given by Duffin and Schaeffer [1]. The purpose of this paper
is to show that (1.5) holds if q is the ultraspherical polynomial P(:, :)

n . Here

130 bojanov and nikolov
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we use the notation P (:, ;)
n from the book of Szego� [6] for the Jacobi poly-

nomials. Precisely, P (:, ;)
n is the polynomial from ?n which is orthogonal in

[&1, 1] with weight

w(x)=(1&x): (1+x);

to every polynomial of degree n&1 and normalized by the condition

P(:, ;)
n (1)=\n+:

n + .

Before concluding this section let us recall some of the basic properties
of the Jacobi orthogonal polynomials which will be needed in the sequel.

Properties:

(i) (d�dx) P (:, ;)
n (x)= 1

2(n+:+;+1) P (:+1, ;+1)
n&1 (x);

(ii) for max[:, ;]� &1�2 the supremum norm of P (:,;)
n is attained

at an endpoint of [&1, 1]; in the case :=;�&1�2, &P (:,:)
n &=

P(:, :)
n (1)=( n+:

n );

(iii) y=P (:, ;)
n satisfies the differential equation

(1&x2) y"+(;&:&(:+;+2) x) y$+n(n+:+;+1) y=0.

The proof of these facts can be found in Szego� [6] or any other textbook
on orthogonal polynomials.

2. The Case :�& 1
2

We demonstrate here a very simple proof of Duffin and Schaeffer type
inequality for a class of ultraspherical polynomials using Theorem A of
A. Shadrin.

Theorem 2.1. Let tj :=tj (P (:,:)
n ), j=0, ..., n, be the extremal points of

P(:, :)
n in [&1, 1] and :� & 1

2. Suppose that f # ?n and

| f (tj)|�|P (:, :)
n (tj)|, j=0, ..., n.

Then

& f (k)&�" d k

dxk P (:, :)
n "

for all k # [1, ..., n].

131duffin and schaeffer type inequality



F
ile

:6
40

J
29

07
04

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

21
92

Si
gn

s:
10

63
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Proof. It is well-known (see Rivlin [4], p. 158, Remark 1, or Szego�
[6], pp. 95�96) that for :�& 1

2 the ultraspherical polynomials P (:, :)
n obey

the representation

P (:, :)
n (x)= :

n

m=0

an, mTm(x)

with nonnegative coefficients [an, m]. We shall use this fact to show that

max
x # [&1, 1] }

1
k

(x2&1) q(k+1)(x)+xq(k)(x) }=q(k)(1)=&q(k)& (2.1)

if q=P (:, :)
n . Indeed, it was shown in Shadrin's paper [5] that (2.1) holds

for q=Tm , m=1, 2, ... . Then for q=P (:, :)
n we have

} 1k (x2&1) q(k+1)(x)+xq (k)(x) }
= } 1k (x2&1) :

n

m=0

an, mT (k+1)
m (x)+x :

n

m=0

an, mT (k)
m (x) }

� :
n

m=0

an, m } 1k (x2&1) T (k+1)
m (x)+xT (k)

m (x) }
� :

n

m=0

an, m |T (k)
m (1)|=q(k)(1).

Finally note that by Property (ii), q(k)(1)=&q(k)& for q=P (:, :)
n . It remains

to apply Theorem A. The proof is completed. K

3. The Case :�&1

Since the representation of P (:,:)
n in terms of Tchebycheff polynomials

contains negative coefficients in the case &1<:<&1�2, we apply here
another approach to extend the result of Theorem 2.1.

Theorem 3.1. Let :� &1 and f # ?n . Then the assumptions

| f (tj)|�|P (:, :)
n (tj)|, j=0, ..., n,

imply

& f (k)&�" d k

dxk P (:, :)
n " .

for k # [2, ..., n].
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As we mentioned already, the cases k=n&1 and k=n follow imme-
diately from Shadrin's result [5]. Thus we may stipulate in what follows
that 1<k�n&2.

The proof of Theorem 3.1 is based on several auxiliary propositions.
Denote P (:, :)

n by q, for simplicity, and set further

y(x) :=q(k)(x),

.(x) :=
1
k

(x2&1) y$(x)+xy(x), (3.1)

u(x) :=
1
k

(x2&1) y$(x).

Let us point out here that according to Property (i)

y(x)=C .P (:+k, :+k)
n&k (x)

with some positive constant C.
Observe that the function ., we just defined, appears in the right hand

side of the inequality (1.4) of Shadrin. Our goal is to show that

&.&=&y&= y(1).

Then Theorem 3.1 could be derived easily from Shadrin's result. The next
lemmas are steps towards this aim.

Lemma 3.1. The inequality

&.&�max[&u&, &y&]

holds for all k # [2, ..., n], if :> &1.

Proof. Clearly |.(\1)|= y(1)=&y&. Then in order to compare the
norm of . with that of y, it suffices to consider the values of .(x) at its
critical points. If { is such a point, i.e., if .$({)=0, then

(1&{2) y"({)&(k+2) {y$({)&ky({)=0.

On the other hand, since y=C .P (:+k, :+k)
n&k , Property (iii) yields

(1&x2) y"(x)&2(k+:+1) xy$(x)+(n&k)(n+k+2:+1) y(x)=0.

Combining this relation at x={ with the previous one, we get

(k+2:) { .y$({)=[(n&k)(n+k+2:+1)+k] y({).

133duffin and schaeffer type inequality
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Thus the functions x .y$(x) and y(x) (and consequently x .y(x) and y$(x))
have the same sign at the critical points of . provided k+2:�0. For such
k and :,

|.({)|�max {1
k

(1&{2) | y$({)|, |{ .y({)|=
and hence the proof is completed. K

The next lemma can be found in the book of Tricomi [7].

Lemma 3.2 (Theorem of Sonin�Po� lya). Let u(x) be a nontrivial solution
of the differential equation

( pu$)$+Pu=0, (3.2)

where the functions p(x) and P(x) are continuously differentiable in the inter-
val [a, b]. Let p(x) be positive on (a, b), P(x) have no zeros on [a, b] and
let the function p(x) P(x) be nondecreasing (nonincreasing) on [a, b]. Then
the absolute values of the successive local extrema of u in (a, b) form a non-
increasing (nondecreasing) sequence.

We intend to apply Lemma 3.2 to the function u, defined by (3.1). In
order to do this we shall need the following.

Lemma 3.3. The function u(x)=(1�k)(x2&1) y$(x) satisfies the differen-
tial equation

((1&x2)k+: u$)$+(1&x2)k+:&2 [(n&k+1)

_(n+k+2:)(1&x2)&4(k+:)] u=0. (3.3)

The proof is a direct verification, using the fact that y and its derivatives
are ultraspherical polynomials, and therefore satisfy the corresponding
differential equations (see Property (iii)).

The next two conclusions from the previous lemmas describe the
behavior of the function u(x).

Corollary 3.1. All critical points of the function u(x)=
(1�k)(x2&1) y$(x) are located in the interval (&;, ;), where ; is the positive
root of the equation

1&x2=
4(k+:)

(n&k+1)(n+k+2:)
.

134 bojanov and nikolov
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Proof. Assume the contrary. Then there exists a point { � (&;, ;), such
that u$({)=0. Assume that { # [;, 1). The case { # (&1, &;] is treated
similarly. Denote by p and P the corresponding functions in the differential
equation (3.3). Set

g(x) :=p(x) u(x) u$(x).

Clearly, g(1)=0, and since g({)=0, Rolle's theorem guarantees the exist-
ence of a point ' # (;, 1), such that g$(')=0. But, using the differential
equation (3.3), we get

g$(x)=( p(x) u$(x))$ u(x)+p(x) u$2(x)=p(x) u$2(x)&P(x) u2(x)

=(1&x2)k+: {u$2(x)&
y$(x)2

k2 [(n&k+1)

_(n+k+2:)(1&x2)&4(k+:)]=
and therefore g$(x)>0 for x # (;, 1), a contradiction. The corollary is
proved. K

Corollary 3.2. For k # [2, ..., n&2] and :> &1, the local extrema of
|u| increase when |x| increases.

Proof. Because of the symmetry we study the function |u(x)| only in the
interval [0, 1].

With p and P the corresponding functions in equation (3.3) we obtain

( pP)$=&2x(1&x2)2k+2:&3 [[2(k+:)&1](n&k+1)(n+k+2:)(1&x2)

&8(k+:)(k+:&1)].

It is seen that ( pP)$ changes its sign at the point x0 # (0, 1) satisfying the
equality

1&x2
0=

8(k+:)(k+:&1)
[2(k+:)&1](n&k+1)(n+k+2:)

.

Further, under the assumption of the proposition, we get

1&x2
0<

4(k+:)
(n&k+1)(n+k+2:)

,

which shows that x0 # (;, 1). Therefore ( p(x) P(x))$ does not change sign
in the interval [0, ;), containing all non-negative critical points of u,

135duffin and schaeffer type inequality
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and ( p(x) P(x))$<0 on this interval. The corollary then follows from
Lemma 3.2. K

Denote by ! the last critical point of u. According to Corollary 3.2

&u&=|u(!)|.

The next lemma gives some more information about the critical point !.

Lemma 3.4. (a) !>- 3�3;

(b) y$(!)<(- 3�3) y$(1).

Proof. (a) By definition, u$(!)=0. This is equivalent to

(1&!2) y"(!)=2!y$(!). (3.4)

Since ! is located to the right of the last zero of y$ and y$(1)>0, we
conclude that y$(!)>0, y$$$(!)>0. Further, using the fact that
y$=C .P (k+:+1, k+:+1)

n&k&1 with C>0, and the differential equation (iii), we
get the relation

0<(1&!2) y$$$(!)=2(k+:+2) !y"(!)&(n&k&1)(n+k+2:+2) y$(!).

(3.5)

Now replacing y"(!)=(2!�(1&!2)) y$(!) from (3.4) in the right hand side
of (3. 5) and making use of the observation y$(!)>0, we obtain

1&!2<
4(k+:+2)

(n&k&1)(n+k+2:+2)+4(k+:+2)
. (3.6)

But k�n&2 by assumption. This yields

1&!2<
4(k+:+2)

(n+k+2:+2)+4(k+:+2)
�

2
3

,

which leads to the assertion (a).

(b) Since y" is an increasing function to the right of !,

y$(1)& y$(!)= y"(%)(1&!)> y"(!)(1&!)=
2!

1+!
y$(!)

(in the last equality we applied (3.4)). Hence

y$(!)<
1+!
1+3!

y$(1).

136 bojanov and nikolov
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But (1+x)�(1+3x) is a decreasing function of x in (0, �). Using now the
inequality !>- 3�3 we get

y$(!)<
1+- 3�3

1+- 3
y$(1)=

- 3
3

y$(1).

The lemma is proved. K

Note that Lemma 3.1 and Corollary 3.2 remain true also for k=1, if
:�&1�2.

Proof of Theorem 3.1. Let :>&1. According to Theorem A, Lemma 3.1
and Corollary 3.2 the theorem will be proved if we show that |u(!)|� y(1),
i.e., if

1
k

(1&!2) y$(!)� y(1).

By Lemma 3.4, and particularly by (3.6), the last inequality will hold if

1
k

4(k+:+2)
(n&k&1)(n+k+2:+2)+4(k+:+2)

- 3
3

y$(1)� y(1),

or, after dividing by a constant factor, if

2 - 3 (k+:+2)(n+k+2:+1)
3k[(n&k&1)(n+k+2:+2)+4(k+:+2)]

P (k+:+1, k+:+1)
n&k&1 (1)

�P (k+:, k+:)
n&k (1).

In view of Property (ii) this is equivalent to

2 - 3 (k+:+2)(n&k)(n+k+2:+1)

�3k(k+:+1)[(n&k&1)(n+k+2:+2)+4(k+:+2)].

Using the identity (n&s)(n+s+2:+1)=n(n+2:+1)&s(s+2:+1),
after some straightforward calculations, the last inequality is reduced to

n(n+2:+1)�(k+1)(k+2:+2)&
4(3k&- 3)(k+:+1)(k+:+2)

3k(k+:+1)&2 - 3 (k+:+2)
,

which is obviously true for every k�n&2.
The case := &1 is obtained by going to the limit. The proof of the

theorem is completed. K

Some computer experiments give us a reason to suggest that Theorem 3.1
is valid for k=1, too.

137duffin and schaeffer type inequality
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In the case :=&1 the endpoints \1 are zeros of the ultraspherical
polynomials and therefore the statement of Theorem 3.1 may be regarded
as Duffin�Schaeffer's type inequality for polynomials satisfying zero bound-
ary conditions. Precisely, the following theorem holds:

Theorem 3.2. Let Pn&1 be the (n&1)-st Legendre polynomial with zeros
[!i]n&1

1 , 1 :=!0>!1> } } } >!n&1>!n :=&1. Let Qn(x) :=(1&x2) P$n&1(x).
If P # ?n satisfies the inequalities

| p(!i)|�|Qn(!i)|, i=0, ..., n,

then

&p(k)&�&Q (k)
n & for k # [2, ..., n].

In order to verify this one only have to take into account that
P(&1, &1)

n (x)=c(1&x2) P$n&1(x), ((1&x2) P$n&1(x))$=&n(n&1) Pn&1(x),
and derive the claim as a corollary of Theorem 3.1.

Theorem 3.2 is close in spirit to a result of Rahman and Schmeisser ([3],
Theorem 2), where Tn&1 occurs instead of Pn&1.
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